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Abstract. We propose a self-consistent approximate solution of the s–f model for describing
the exchange coupling of a local moment system with a partially filled energy band. Induced
electronic correlations account for the characteristic quasiparticle band effects which become
manifest via striking temperature dependencies, band deformations and splittings. For weak s–f
exchange interactions a ‘Stoner-like’ spin splitting of the conduction band proportional to the
f magnetization occurs. As soon as the coupling exceeds a critical value an additional spin
splitting of the quasiparticle dispersion sets in, which is due to different elementary excitations.
One of these appears as a repeated emission and reabsorption of a magnon by the conduction
electron, resulting in an effective electron–magnon attraction. This gives rise to a polaron-
like quasiparticle (a ‘magnetic polaron’). Other elementary processes are connected to magnon
emission or absorption by the conduction electron (‘scattering states’). The polarization of the
conduction band due to the s–f exchange interactionJ feeds back to the localized spin system
leading to an indirect coupling between the spins. For weak s–f coupling the RKKY mechanism
dominates(Tc ∝ J 2), but with remarkable deviations for intermediate and strong couplings. The
Curie temperature saturates with increasingJ , where the saturation value is strongly dependent
on the band occupationn. The oscillating behaviour of the effective exchange integral connecting
the localized spins restricts ferromagnetism to special regions forn. The magnetization curve,
the spin polarization of the itinerant electrons, and f–f as well as s–f spin correlation functions
are worked out for a simple cubic lattice and discussed in terms of the band occupationn and
the s–f exchange couplingJ .

1. Introduction

Ferromagnetism (antiferromagnetism) is bound by two basic preconditions. The system
has to be a solid, and this solid must contain permanent magnetic moments. Dividing
the solids roughly into insulators and metals, and the moments into itinerant and localized
ones, one gets four possible combinations, which provide a fairly reasonable classification
of magnetism. The magnetic insulators with localized magnetic moments are excellently
described by the Heisenberg model [1], as far as the purely magnetic properties are
concerned. The prototype is the ferromagnetic 4f insulator EuO [2–6]. As insulators
with itinerant moments one might consider the so-called ‘Mott–Hubbard insulators’ such as
antiferromagnetic NiO [7], the permanent moments of which stem from a 1–3 eV broad,
fully occupied quasiparticle subband [8]. If the electrical conductivity and the spontaneous
magnetization of a magnetic metal are caused by the same group of electrons, then we
speak of a band magnet. The permanent moments are then necessarily itinerant (Fe, Co,
Ni). Band magnetism is far from being fully understood [9]. Limited insight can be derived
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from ‘local spin-density approximations’ [10–12], local band theories [13] and multiband
Hubbard models [14].

Magnetic metals, for which electrical conduction and magnetization are caused by
different groups of electrons, are called ‘local moment magnets’. The prototype is the
ferromagnetic rare-earth metal Gd [15] that takes its magnetism from a strongly localized
half-filled 4f shell, while itinerant electrons in rather broad 6s, 5d bands determine the
conductivity. Many striking properties of these materials are due to exchange correlations
between the two well-defined electronic subsystems. As far as such ‘cross-effects’ are
concerned the so-called s–f (or s–d) model [3] has turned out to be a reasonable theoretical
framework. It traces back these ‘cross-effects’ to an intra-atomic exchange interaction
between the conduction electron spin and the localized moment (the f spin). The mutual
influence of the two electronic subsystems leads, on the one hand, to a remarkable spin,
temperature and carrier concentration dependence of the quasiparticle band-structure of the
itinerant electrons, and, on the other hand, to an indirect coupling of the localized f spins.
This indirect coupling, called RKKY interaction [16–18], is mediated by an exchange-
induced spin polarization of the ‘a priori’ non-magnetic conduction band. It is the main goal
of our study to present a complete theory of the s–f model, which inspects in a self-consistent
manner the mutual influence of the local moment magnetism and the quasiparticle nature of
the conduction band. In this paper we restrict considerations exclusively to ferromagnetic
systems. Antiferromagnetism will be discussed in a forthcoming paper.

The final goal of our investigation is that of establishing the magnetic and electronic
properties of real substances such as the ferromagnetic 4f metals Gd, Tb, and Dy. It is a fact
that the appearance of ferromagnetism is basically caused by strong electron correlations.
A full understanding therefore requires a thorough investigation of the electronic structure
of the underlying material. In previous papers we have done such a study for the classical
band ferromagnets Fe [19], Co [20], and Ni [14]. The method is based on a combination
of a many-body evaluation of an appropriate theoretical model with a single-electron band-
structure calculation on the basis of density functional theory. It can be demonstrated
how magnetic and electronic properties are intercorrelated. Rather realistic values for
the Curie temperatures were derived. A similar procedure has been applied to Gd [15],
where, however, the magnetic properties cannot yet be determined self-consistently. The
magnetization curve of the localized spin system has been described by anS = 7/2 Brillouin
function and only the exchange-induced reaction of the conduction band on the assumed
magnetic state of the spin system has been inspected. It could be shown that the s–f exchange
leads to a remarkable non-uniform magnetic behaviour of the energy spectrum at different
positions in the Brillouin zone, and in particular to different temperature dependencies.
Special splittings of the single-electron spectral density, caused by the s(d)–f exchange
interaction, lead one to expect complicated photoemission spectra. However, nothing could
be said about the origin of the Gd ferromagnetism. We present in this paper a many-
body evaluation of the s–f model that allows a self-consistent inspection of the interplay
between magnetism and electronic structure. Effective exchange integrals for the spin–
spin interaction are expressed in terms of the electronic self-energy which in turn depends
decisively on correlation functions of the spin system. This gives rise to a sensitive influence
of the conduction electron density on the Curie temperature and on other magnetic properties.
Exchange-induced spin polarizations of the band electrons feed back to the localized spins
accounting for an indirect coupling between them. In lowest order the well-known RKKY
result is reproduced. Because of the pronounced many-particle aspects covered by the ‘s–f
problem’ it is necessary to start with an exhaustive model study. Only then will we be able
to interpret unambiguously the results for real substances such as Gd. Thus we present in
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this paper a detailed inspection of the s–f model, which for the band part means an extension
and improvement of our earlier theory [15], while the f-moment part is now self-consistently
included.

The paper is organized as follows. In section 2 the model Hamiltonian is introduced and
the corresponding many-body problem is formulated. The s–f model is thought appropriate
for an exchange-coupled system of itinerant conduction electrons and localized magnetic
moments. For this reason intercorrelated electronic and magnonic self-energies mould the
physical properties. In section 3 we first develop an approximate solution for the electronic
self-energy part, and that in terms of certain f spin correlation functions. The approach
treats the site-dependent single-electron Green function and applies to all known exactly
solvable limiting cases. The subsequent treatment of the magnon part consists of two steps.
First we transform the s–f interaction operator into an ‘effective’ Heisenberg exchange
operator. The ‘effective’ exchange integrals turn out to be functionals of the electronic self-
energy part (section 4). Magnon energies and spin correlation functions are then derived
from a properly defined f spin Green function. Eventually a rather complicated, but closed
system of equations is formed that can be solved self-consistently for all interesting physical
properties. The results of the numerical evaluation are presented and discussed in section 5.
Comprehensive conclusions and an outlook with respect to applications to real substances
are given in section 6.

2. The model Hamiltonian and its many-body problem

The principal goal of our study is a qualitative understanding of temperature and correlation
effects in the electronic structure of metallic ‘local moment’ ferromagnets such as the 4f
elements Gd (the prototype!), Tb, and Dy. Since a direct interaction of the localized
moments must be negligible in these materials, the collective magnetic order below a
critical temperature is explicable only by an indirect interaction via the ‘a priori’ non-
magnetic itinerant conduction electrons. This physical background is well accounted for by
the s–f model [1, 3], the Hamiltonian of which

H = Hs + Hsf (2.1)

describes an exchange-coupled system of itinerant conduction electrons and localized
magnetic f moments. The conduction electrons are treated as s electrons without explicit
Coulomb interaction:

Hs =
∑
ijσ

Tij c
+
iσ cjσ =

∑
kσ

ε(k)c+
kσ ckσ . (2.2)

The contributions of the Coulomb interaction between s electrons are considered to be not
decisive for the phenomena that we are interested in. They might be incorporated by a proper
renormalization of the Bloch energiesε(k), e.g. by using the results of a corresponding LDA
calculation [15]. This will indeed be done in forthcoming papers which will extend our
present model study to real substances like Gd.

The hopping integralsTij and Bloch energiesε(k) are connected by Fourier transform-
ation:

Tij = 1

N

∑
k

ε(k)eik·(Ri−Rj ). (2.3)

c+ (c) represents the creation (annihilation) operator of an electron specified by the lower
indices: i, j stand for the lattices sitesRi , Rj . σ = ↑, ↓ is the electron spin projection,
andk is a wave vector from the first Brillouin zone.
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Each lattice siteRi possesses a localized magnetic f moment represented by a spin
operatorSi . As already mentioned, a direct interaction is not considered but a coupling of
the spin system to the band electrons by an intra-atomic s–f exchange is considered:

Hsf = −J
∑

i

σi · Si (2.4)

σi is the Pauli spin operator. For the following application the second-quantization
representation appears to be convenient:

Hsf = −1

2
J

∑
i,σ

(zσ Sz
i niσ + Sσ

i c+
i−σ ciσ) (2.5)

Sσ
j = Sx

j + izσS
y

j z↑ = +1 z↓ = −1. (2.6)

niσ = c+
iσ ciσ is the occupation number operator. With respect to applications to materials

like Gd we shall assume aferromagneticexchange coupling, i.e. a positive s–f coupling
constantJ . In the case whereJ < 0 the model Hamiltonian (2.1) is that of the so-called
‘Kondo lattice’ [21, 22].

In spite of its simple structure the operator (2.1) creates a rather sophisticated many-
body problem which cannot be solved exactly in the general case. There exist, however,
some non-trivial, rigorously tractable limiting cases [23–25] which can be used as tests for
the otherwise unavoidable approximations.

The goal is a self-consistent description of how the not directly interacting f spins may
be forced into a collective magnetic order by a proper spin polarization in the conduction
band mediated byHsf , and how the electronic quasiparticle band-structure reacts to the
magnetic state of the localized spin system. All of the information that we are interested in
can be read off from the two retarded Green functions

Gijσ (E) = 〈〈ciσ ; c+
jσ 〉〉E = −i

∫ ∞

0
dt exp

(
− i

h̄
Et

)
〈[ciσ (t), c+

jσ (0)]+〉 (2.7)

P
(a)
ij (E) = 〈〈S+

i ; eaSz
j S−

j 〉〉E = −i
∫ ∞

0
dt exp

(
− i

h̄
Et

)
〈[S+

i (t), (eaSz
j S−

j )(0)]−〉. (2.8)

〈· · ·〉 means thermodynamic averaging, while [. . . , . . .]+ ([. . . , . . .]−) denotes the anti-
commutator (commutator).Gijσ (E) is known as the ‘single-electron Green function’, while
we shall refer toP (a)

ij (E) as the ‘magnon Green function’.a is a real parameter chosen
for convenience in order to derive from the magnon function all interesting spin correlation
functions, and that for arbitrary (!) spin valuesS. This form ofP (a)

ij (E) has been introduced
by Callen [26] to investigate the Heisenberg model. Its usefulness will become evident in
section 4. Besides the site-dependent functionsGijσ (E) and P

(a)
ij (E), the wave-vector-

dependent Fourier transforms are convenient (translational symmetry!), e.g.

Gkσ (E) = 1

N

∑
i,j

Gijσ (E)eik·(Ri−Rj ) = 〈〈ckσ ; c+
kσ 〉〉E. (2.9)

ckσ is the Fourier transform ofciσ . The equation of motion of the single-electron Green
function is formally solved by introducing the self-energyMkσ (E):

〈〈[ckσ , Hsf ]−; c+
kσ 〉〉E = Mkσ (E)Gkσ (E). (2.10)

The self-energy gathers together all of the influences of the s–f exchange interaction on the
electronic structure of the conduction band, being therefore a central quantity of our study:

Gkσ (E) = h̄

E − ε(k) − Mkσ (E)
. (2.11)
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A function of exactly the same usefulness as the Green functionGkσ (E) is the single-
electron spectral density, which is, except for as regards the corresponding dipole transition
matrix elements, directly related to angle- and spin-resolved (inverse) photoemission
experiments:

Skσ (E) = − 1

π
Im Gkσ (E) = − h̄

π

Im Mkσ (E)

(E − ε(k) − ReMkσ (E))2 + (Im Mkσ (E))2
. (2.12)

An additional wave-vector summation yields the quasiparticle density of states (QDOS) in
terms of which we shall discuss a great part of our results:

ρσ (E) = 1

Nh̄

∑
k

Skσ (E). (2.13)

By use of the so-called spectral theorem [27] the spectral density helps, e.g., to determine
the (k, σ )-dependent average occupation number:

〈nkσ 〉 = 〈c+
kσ ckσ 〉 =

∫ +∞

−∞
dE f−(E)Skσ (E) (2.14)

wheref−(E) is the Fermi function. The local occupation number is related to the QDOS:

〈niσ 〉 = 1

h̄

∫ +∞

−∞
dE f−(E)Siiσ (E) =

∫ +∞

−∞
dE f−(E)ρσ (E). (2.15)

In a translationally symmetric system this quantity will be site independent:〈niσ 〉 ≡ 〈nσ 〉.
In the next section we derive an explicit expression for the electronic self-energy

Mkσ (E). The final result will contain a rather large number of equal-time correlation
functions of purely s character such as (2.14) and (2.15), of purely f character like

〈Sz
i 〉 〈(Sz

i )
2〉 〈(Sz

i )
3〉 〈Sσ

i S−σ
i 〉 (2.16)

and of ‘mixed’ s–f character:

1σ = 〈Sz
i niσ 〉 γσ = 〈S−σ

i c+
iσ ci−σ 〉 (2.17)

µσ = 〈S−σ
i Sσ

i niσ 〉 ησ = 〈S−σ
i Sz

i c
+
iσ ci−σ 〉 ϑσ = 〈Sz

i niσ ni−σ 〉 ≡ ϑ. (2.18)

All of these terms must be determined self-consistently within our (approximate) theory.
We shall demonstrate in the next section how to express the ‘mixed’ correlations (2.17) and
(2.18) in terms of the electronic self-energy. For the pure f spin correlations (2.16) we exploit
the magnon Green function (2.8). The f spin operators commute withHs , so P

(a)
ij (E) is

mainly determined by the s–f exchange. We propose in section 4 a transformation ofHsf

into an indirect Heisenberg exchange operator. The corresponding exchange integralsĴij

reduce in first order to the well-known RKKY result [16–18] being otherwise functions of
the electronic self-energyMkσ (E). Thereby the polarization of the conduction electrons,
provoked by the localized f spins, feeds back to the spin system. The functionP

(a)
ij (E) is

calculated by use of the effective Heisenberg model Hamiltonian (4.14).
In the next section we propose a theory for the fundamental electronic self-energy

Mkσ (E).

3. The electronic self-energy

Our procedure for obtaining the conduction electron self-energyMkσ (E) starts from the
equation of motion of the single-electron Green function (2.7):∑

m

(Eδim − Tim)Gmjσ (E) = h̄δij − 1

2
J (zσ0ii,jσ (E) + Fii,jσ (E)) (3.1)
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that contains two ‘higher’ functions which we call the ‘spin-flip’ function:

Fip,jσ (E) = 〈〈S−σ
i cp−σ ; c+

jσ 〉〉E (3.2)

and the ‘Ising’ function, respectively:

0ip,jσ (E) = 〈〈Sz
i cpσ ; c+

jσ 〉〉E. (3.3)

To achieve a solution for the single-electron Green function we construct in the next step
the equations of motion of the ‘new’ functions (3.2) and (3.3). They are formally given by
the following expressions:∑

r

(Eδpr − Tpr)Fir,jσ (E) = 〈〈S−σ
i [cp−σ , Hsf ]−; c+

jσ 〉〉E + 〈〈[S−σ
i , Hsf ]−cp−σ ; c+

jσ 〉〉E
(3.4)∑

r

(Eδpr − Tpr)0ir,jσ (E) = h̄〈Sz〉δpj + 〈〈Sz
i [cpσ , Hsf ]−; c+

jσ 〉〉E

+ 〈〈[Sz
i , Hsf ]−cpσ ; c+

jσ 〉〉E. (3.5)

On the right-hand sides of these equations there appear further ‘higher’ Green functions,
which prevent a direct solution of the problem. Our treatment of these functions consists of
two steps. One concerns the casei 6= p, and the other the diagonal termsi = p. For i 6= p

we use a self-consistent ‘self-energy approach’ which leads to an effective decoupling of
the hierarchy of the equations of motion. This approach turns out to be less convincing for
the diagonal terms,i = p, therefore being replaced by a moment technique which takes
the local correlations into account better. The latter appears to be correct for all known,
rigorously calculable limiting cases. We first introduce the ‘self-energy approach’.

(a) i 6= p. The starting point is the definition equation of the electronic self-energy, the
site-dependent analogue to (2.10):

〈〈[cpσ , Hsf ]−; c+
jσ 〉〉E =

∑
r

Mprσ (E)〈〈crσ ; c+
jσ 〉〉E. (3.6)

This relation formally corresponds to the replacement

[cpσ , Hsf ]− ⇒
∑

r

Mprσ (E)crσ (3.7)

within the brackets of the Green function. The spectral representations [27] of the two
functions in equation (3.6) reveal that both are meromorphic functions, with exactly the
same single-particle poles. They differ only in the spectral weights of these poles, where
the equality of both sides in (3.6) is ensured by the self-energy componentsMprσ (E). When
we now inspect in the same sense the spectral decomposition of the following two functions:

〈〈Sz
i [cpσ , Hsf ]−; c+

jσ 〉〉E 〈〈Sz
i crσ ; c+

jσ 〉〉E
which are identical to those in equation (3.6) except for in that they contain the additional
spin operatorSz

i , we come to the same conclusion—that they can differ only in their spectral
weights, but must have exactly the same single-particle pole structure. By use of (3.7) and
in analogy to (3.6) we therefore propose the following plausibleansatz:

〈〈Sz
i [cpσ , Hsf ]−; c+

jσ 〉〉E ≈
∑

r

Mprσ (E)〈〈Sz
i crσ ; c+

jσ 〉〉E (i 6= p). (3.8)

The same justification can be applied to the first term on the right-hand side of equation
(3.4):

〈〈S−σ
i [cp−σ , Hsf ]−; c+

jσ 〉〉E ≈
∑

r

Mpr−σ (E)〈〈S−σ
i cr−σ ; c+

jσ 〉〉E (i 6= p). (3.9)
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The two other ‘higher’ Green functions in the equations of motion (3.4) and (3.5) contain
commutators of spin operators with the interaction partHsf of the model Hamiltonian. In
the next sectionHsf is transformed, as mentioned above, into an effective exchange operator
Hf for the localized spin system (4.14). If we already use at this stage the effective exchange
operator, then we have now to apply, in strict analogy to (3.7),

[Sσ
i , Hf ]− = 2zσ

∑
m

Ĵim(Sz
mSσ

i − Sz
i S

σ
m) (3.10)

[Sz
i , Hf ]− =

∑
m

Ĵim(S+
i S−

m − S−
i S+

m). (3.11)

The effective exchange integralŝJim are explicitly derived in the next section (see equation
(4.15)). For the final evaluation of the complete theory they have to be determined
self-consistently because of being complicated functionals of the electronic self-energy.
Performing the same approximations as in section 4 for the magnon system, we get for the
spin-flip function in (3.4) by use of (3.11)

〈〈[S−σ
i , Hsf ]−cp−σ ; c+

jσ 〉〉E ≈ 2zσ 〈Sz〉
∑
m

Ĵim(Fmp,jσ (E) − Fip,jσ (E)) (i 6= p)

(3.12)

while the corresponding Green function in the equation of motion (3.5) of the ‘Ising function’
0ip,jσ (E) is approximately zero:

〈〈[Sz
i , Hsf ]−cpσ ; c+

jσ 〉〉 ≈
∑
m

Ĵim(〈S+
i S−

m〉 − 〈S−
i S+

m〉)Gpjσ (E) = 0 (i 6= p). (3.13)

Using (3.8), (3.9), (3.12), and (3.13), the ‘higher’ Green functions in the equations of motion
(3.4) and (3.5) are expressed fori 6= p as linear combinations of the simpler functions (2.7),
(3.2), and (3.3), where the coefficients are directly or indirectly(Ĵim) determined by the
electronic self-energy.

(b) i = p. For the diagonal terms on the right-hand side of (3.4) and (3.5), we cannot
use the ‘self-energy approaches’ because of the strong intra-atomic correlations between
the localized f spins and the itinerant conduction electron spin. We first inspect the ‘higher
spin-flip functions’ of equation (3.4) starting with an explicit evaluation of the commutators:

〈〈S−σ
i [ci−σ , Hsf ]−; c+

jσ 〉〉E = 1

2
J (zσF

(1)
ii,jσ (E) − F

(2)
ii,jσ (E)) (3.14)

〈〈[S−σ
i , Hsf ]−ci−σ ; c+

jσ 〉〉E = 1

2
J (−F

(3)
ii,jσ (E) + 2zσF

(4)
ii,jσ (E)). (3.15)

Here we have used the abbreviations

F
(1)
ii,jσ (E) = 〈〈S−σ

i Sz
i ci−σ ; c+

jσ 〉〉E (3.16)

F
(2)
ii,jσ (E) = 〈〈S−σ

i Sσ
i ciσ ; c+

jσ 〉〉E (3.17)

F
(3)
ii,jσ (E) = 〈〈S−σ

i niσ ci−σ ; c+
jσ 〉〉E (3.18)

F
(4)
ii,jσ (E) = 〈〈Sz

i c
+
i−σ ciσ ci−σ ; c+

jσ 〉〉E. (3.19)

The ‘higher Ising functions’ on the right-hand side of (3.5) do not require the introduction
of further Green functions since they can be exactly expressed in terms of the functions
(2.7), (3.2), (3.3), (3.16), (3.17), and (3.18) already defined (see appendix A).

To get a closed system of equations we are eventually left with the determination of the
functionsF

(n)
ii,jσ (E), n = 1, . . . , 4 which have some exactly calculable limiting cases. For
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S = 1/2 and arbitrary temperatures, the functionsF
(1)
ii,jσ (E), F

(2)
ii,jσ (E) obey the following

exact relations:

F
(1)
ii,jσ (E) = 1

2
zσFii,jσ (E) (3.20)

F
(2)
ii,jσ (E) = 1

2
Gijσ (E) − zσ0ii,jσ (E). (3.21)

The same two functions for arbitrary spinS, but for ferromagnetic saturation(〈Sz〉 = S),
are given by

F
(1)
ii,jσ (E) →

((
S − 1

2

)
+ 1

2
zσ

)
Fii,jσ (E) (3.22)

F
(2)
ii,jσ (E) → SGijσ (E) − zσ0ii,jσ (E). (3.23)

These exact limiting cases, (3.20) to (3.23), suggest the following structures for the general
case:

F
(1)
ii,jσ (E) = α1σGijσ (E) + β1σFii,jσ (E) (3.24)

F
(2)
ii,jσ (E) = α2σGijσ (E) + β2σ0ii,jσ (E). (3.25)

The subsequent evaluation will yieldα1σ = 0 in accordance with (3.20) and (3.22). Similar
considerations for the exactly solvable limiting cases of empty(n = 0) and full (n = 2)

conduction bands yield for the two other functions

F
(3)
ii,jσ (E) = α3σGijσ (E) + β3σFii,jσ (E) (3.26)

F
(4)
ii,jσ (E) = α4σGijσ (E) + β4σ0ii,jσ (E). (3.27)

For the complete solution we still need the coefficientsαnσ andβnσ . The set of equations
(3.24) to (3.27) contains seven different Green functions of the type〈〈A; B〉〉E . For each
of them we can calculate exactly the first two spectral moments according to the relation

M
(n)
AB ≡

〈(
i h̄

∂

∂t

)n

[A(t), B(t ′)]+

〉
t=t ′

n = 0, 1, 2, . . .. (3.28)

Because of the equivalent equation

M
(n)
AB = − 1

π

∫ +∞

−∞
dE En Im〈〈A; B〉〉E (3.29)

the moments can be used in the next step to fix the unknown coefficientsαnσ , βnσ in the
equations (3.24) to (3.27), and that in terms of certain expectation values. The spectral
moments needed as well as the resulting coefficients are listed in appendix B. They are
dominated by the expectation values of the f spin system listed in (2.16), and by the ‘mixed’
s–f correlation functions in (2.17) and (2.18). The latter appear essential for a precise
interpretation of the rather sophisticated properties of the s–f exchange model. Fortunately,
they can all be derived from the above-introduced Green functions.

By use of the spectral theorem for Green functions, the correlation functions in (2.17),
1σ and γσ , follow directly from the ‘Ising’ function0ii,jσ (E), and from the ‘spin-flip’
function Fii,jσ (E) respectively, whileµσ , ησ , andϑσ , defined in (2.18), are predetermined
by (3.25), (3.24), and (3.27):

µσ = α2σ 〈nσ 〉 + β2σ1σ (3.30)

ησ = α1σ 〈nσ 〉 + β1σ γ−σ (3.31)

ϑσ = −α4σ 〈nσ 〉 − β4σ1σ ≡ ϑ. (3.32)
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We will demonstrate in section 4 how to get the pure f spin correlations (2.16). Since all
expectation values in the coefficientsαnσ , βnσ can be expressed in terms of one or more
of the Green functions involved (see appendix B), we finally come to a closed system of
equations which can be solved self-consistently for all quantities of interest. Some further
details are given in appendix C.

The resulting implicit equation for determination of the electronic self-energy reads as
follows:

Mqσ (E) = −1

2
Jzσ 〈Sz〉 + 1

4
J 2 Dqσ (E)

Nqσ (E)
. (3.33)

The first term represents the well-known mean-field contribution of the s–f exchange, which
is linear in the couplingJ , while the second term involves the higher-order consequences
of the ‘Ising’ and the ‘spin-flip’ parts of the exchange interactionHsf . TheDqσ (E) as well
as theNqσ (E) are complicated functionals of the self-energy for both spin directions:

Dqσ (E) = (Aσ + Bσ 〈Sz〉)
(

1 − T0σ + 1

2
Jzσ cσ

1

h̄
G0σ (E)

)
Pqσ (E)

+
(

1

2
Jaσ + zσ 〈Sz〉

(
1

2
Jbσ − Mqσ (E)

)
1

h̄
G0σ (E)

)
×

(
1 − Qqσ (E) + 1

2
JzσBσPqσ (E)

)
(3.34)

Nqσ (E) = cσBσ

1

h̄
G0σ (E)Pqσ (E) − (1 − T0σ (E))(1 − Qqσ (E)). (3.35)

Here we have used the following abbreviations for the propagators:

Pqσ (E) = 1

N

∑
p

1

E + zσ Ê(q − p) − ε( p) − Mp−σ (E)
(3.36)

G0σ (E) = 1

N

∑
p

h̄

E − ε( p) − Mpσ (E)
= 1

N

∑
p

Gpσ (E) (3.37)

Qqσ (E) = 1

N

∑
p

zσ Ê(q − p) − Mp−σ (E) + (1/2)JCσ

E + zσ Ê(q − p) − ε( p) − Mp−σ (E)
(3.38)

T0σ (E) = 1

N

∑
p

(1/2)Jbσ − Mpσ (E)

E − ε( p) − Mpσ (E)
. (3.39)

The Ê( p) are dressed magnon energies to be derived in equation (4.21). We recognize that
(3.33) is not an analytic solution forMqσ (E) at all, but must be solved self-consistently.
Via the coefficientsaσ , bσ , cσ andAσ , Bσ , Cσ , which are explained in appendix C, a lot of
expectation values are involved, e.g., the spin-dependent average occupation number〈nσ 〉.
According to (2.15) this quantity is directly related to the single-electron Green function.
Of great importance are the ‘mixed’ correlation functions in equation (2.17) which can
rigorously be expressed in terms of the electronic self-energyMqσ (E), simply by applying
the spectral theorem to certain ‘higher’ Green functions involved in our theory. The result
(3.33) for the electronic self-energy contains furthermore the pure f spin correlations, listed
in (2.16). They cannot be expressed in terms of the Green functions used in this section.
They have to be derived from the magnon Green functionP

(a)
ij (E), defined in (2.8). To

evaluate this function we are going to transform in the next section the s–f interactionHsf

(2.4) into an effective Heisenberg exchange operatorHf .
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4. The modified RKKY interaction

Our model does not consider a direct exchange interaction between the localized f spins.
We discuss in this section the indirect f spin coupling mediated by the s–f exchange (2.4),
which can be written in the following equivalent form:

Hsf = −J
1

N

∑
i,σ,σ ′

∑
k,q

e−iq·Ri (Si · σ̂)σσ ′c+
k+qσ ckσ ′ . (4.1)

The components of the band electron spin operatorσ̂ are the Pauli spin matrices. We
transformHsf into an ‘effective’ spin HamiltonianHf by averagingHsf in the subspace of
the conduction electrons(〈 〉(s)):

Hf = −J
1

N

∑
i,σ,σ ′

∑
k,q

e−iq·Ri (Si · σ̂)σσ ′ 〈c+
k+qσ ckσ ′ 〉(s). (4.2)

In the above-mentioned subspace the f spin operators do not act. On the other hand, the
expectation value(〈 〉(s)) may still have operator properties in the f spin subspace. For the
same reason〈c+

k+qσ ckσ ′ 〉(s) does not necessarily vanish forq 6= 0 and/orσ 6= σ ′. We try
to evaluate the expectation value on the right-hand side of (4.2) by solving the equation of
motion of the Green function

Ĝσσ ′
k,k+q(E) = 〈〈ckσ ; c+

k+qσ ′ 〉〉(s)E . (4.3)

This function is formally defined as in (2.7) and (2.9), only the averaging has to be done
in the s subspace only. The equation of motion reads

(E − ε(k))Ĝσ ′σ
k,k+q = h̄δq,0δσσ ′ − J

1

N

∑
ik′σ ′′

e−i(k−k′)·Ri (Si · σ̂)σ ′σ ′′Ĝσ ′′σ
k′,k+q(E). (4.4)

This can be iterated up to any desired accuracy resulting in spin products of the type

(Si · σ̂)σ ′σ ′′(Sj · σ̂)σ ′′σ ′′′(Sk · σ̂)σ ′′′σ ′′′′ · · · .
For further unavoidable approximations it is recommended to write the equation of motion
in an alternative, but equivalent way by considering the ‘second operator’ in (4.3),c+

k+qσ ′ ,
as the ‘active’ operator:

(E − ε(k + q))Ĝσ ′σ
k,k+q(E) = h̄δq,0δσσ ′ − J

1

N

∑
ik′σ ′′

e−i(k′−(k+q))·Ri (Si · σ̂)σ ′′σ Ĝσ ′σ ′′
k,k′ (E).

(4.5)

Both equations (4.4) and (4.5) are still exact. Introducing the Green function of the ‘free’-
electron system,

G
(0)

k (E) = h̄

E − ε(k)
(4.6)

we can combine the two equations of motion:

Ĝσ ′σ
k,k+q(E) = δσσ ′δq0G

(0)

k (E) − J
1

2Nh̄

∑
ik′σ ′′

{e−i(k−k′)·Ri G
(0)

k (E)(Si · σ̂)σ ′σ ′′Ĝσ ′′σ
k′,k+q(E)

+ e−i(k′−(k+q))·Ri G
(0)

k+q(E)(Si · σ̂)σ ′′σ Ĝσ ′σ ′′
k,k′ (E)}. (4.7)

The first-order approximation on the r.h.s.

Ĝσ ′′σ
k′,k+q(E) → δσ ′′σ δk′,k+qG

(0)

k+q(E)

Ĝσ ′σ ′′
k,k′ (E) → δσ ′σ ′′δkk′G

(0)

k (E)
(4.8)
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leads to the following compact expression:

[Gσ ′σ
k,k+q(E)](1) = δσσ ′δq0G

(0)

k (E) − J
1

h̄N

∑
i

eiq·Ri G
(0)

k (E)(Si · σ̂)σ ′σG
(0)

k+q(E). (4.9)

It will be shown that this approximate result reproduces the ‘normal’ RKKY interaction.
In order to incorporate to higher order the exchange-induced polarization of the itinerant
conduction electrons, we replace the Green functions on the r.h.s. of the exact equation (4.7)
in accordance with (4.8) but using the full single-electron Green function (2.11), which we
have evaluated in section 3. Defining

h̄Aσ ′σ
k,k+q(E) = G

(0)

k (E)Gk+qσ (E) + G
(0)

k+q(E)Gkσ ′(E) (4.10)

we get

Ĝσ ′σ
k,k+q(E) ≈ δσσ ′δq0G

(0)

k (E) − J
1

2N

∑
i

eiq·Ri (Si · σ̂)σ ′σAσ ′σ
k,k+q(E). (4.11)

In arriving at (4.11) we have neglected the non-diagonal terms(q 6= 0, σ ′ 6= σ ′′) in the
‘restricted’ Green functions on the r.h.s. of (4.7). We believe that this is partly compensated
by using in (4.10) the full electronic self-energyMkσ (E) (via Gkσ (E)) which in principle
incorporates all scattering processes of the conduction electron.

For the effective spin Hamiltonian (4.2) we need the expectation value〈c+
k+qσ ckσ ′ 〉(s),

which we express in terms of the imaginary part of the Green function (4.11) exploiting the
spectral theorem [24]:

1

N

∑
k

〈c+
k+qσ ckσ ′ 〉(s) ≈ 1

2
δσσ ′δq0〈n〉 − J

1

2N

∑
i

eiq·Ri Dσσ ′
q (Si · σ̂)σ ′σ . (4.12)

Here we have defined

Dσσ ′
q = − 1

π
Im

∫ +∞

−∞
dE f−(E)

1

Nh̄

∑
k

Aσ ′σ
k,k+q(E). (4.13)

〈n〉 is the average number of electrons per site(0 6 〈n〉 6 2). One recognizes that averaging
in the s subspace does not remove operator properties for the f system. Equation (4.12)
inserted into (4.2) transforms the f spin HamiltonianHf into an ‘effective’ Heisenberg
Hamiltonian

Hf = −
∑
i,j

ĴijSi · Sj . (4.14)

The influence of the conduction electrons on the localized spin system is thereby incorp-
orated in an ‘effective’ spin–spin interaction, where the exchange integrals

Ĵij = 1

N

∑
q

Ĵ (q)e−iq·(Ri−Rj ) (4.15)

are mainly determined by the electronic self-energy:

Ĵ (q) = −1

8
J 2

∑
σ

Dσσ
q . (4.16)

It is easy to demonstrate that the first-order approach (4.8) is equivalent to the ‘normal’
RKKY interaction. In this case (4.13) simplifies to

Dσσ
q ⇒ D(1)

q = − 2

π
Im

∫ +∞

−∞
dE f−(E)

1

Nh̄2

∑
k

G
(0)

k (E)G
(0)

k+q(E) (4.17)
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and the effective exchange integrals (4.16) become identical to the well-known RKKY
expression

J (1)(q) = − 1

2N
J 2

∑
k

f−(ε(k + q)) − f−(ε(k))

ε(k + q) − ε(k)
. (4.18)

We shall use the full result (4.16), by which the s–f exchange interactionHsf has been
transformed into an indirect coupling between the localized spins, to calculate the ‘pure’
spin correlations (2.16), in particular the f magnetization〈Sz

i 〉. The exchange integrals
Ĵij are decisively influenced by the electronic self-energy, and have therefore to be fixed
self-consistently.

In order to determine the f spin correlation functions (2.16) we evaluate the equation
of motion of the magnon Green functionP (a)

ij (E), defined in (2.8), by applying the f
spin Hamiltonian (4.14). Within the so-called Tyablikov approximation [28] one finds
straightforwardly for the wave-vector-dependent magnon Green function

P (a)
q (E) = 〈A(a)〉

E − E(q) + i0+ (4.19)

〈A(a)〉 = 〈[S+
i , eaSz

i S−
i ]−〉. (4.20)

The E(q) are the ‘effective’ magnon energies

E(q) = 2〈Sz〉(Ĵ0 − Ĵ (q)) (4.21)

Ĵ0 =
∑

i

Ĵim =
∑
m

Ĵim = Ĵ (q = 0). (4.22)

In determining〈Sz〉 for an arbitrary spin valueS we use the method first proposed by
Callen [26]. Details are given in appendix D. We are listing here only the final results for
the important f spin correlations.

The result for the f spin magnetization reads

〈Sz〉 = h̄
(1 + S + ϕ)ϕ2S+1 + (S − ϕ)(1 + ϕ)2S+1

(1 + ϕ)2S+1 − ϕ2S+1
. (4.23)

Here we have used the definition

ϕ(S) = 1

N

∑
q

1

eβE(q) − 1
. (4.24)

ϕ depends onS via the magnon energiesE(q). Since the conduction electron self-energy
Mqσ (E) appears in the ‘effective’ exchange integralsĴij , it decisively influencesϕ(S) and
thereby the f spin magnetization〈Sz〉. Another quantity of interest is

〈S−S+〉 = 2h̄〈Sz〉ϕ(S). (4.25)

We combine (4.23) and (4.25) to get

〈(Sz)2〉 = h̄2S(S + 1) − h̄〈Sz〉(1 + 2ϕ(S)). (4.26)

Furthermore we need

〈(Sz)3〉 = h̄3S(S + 1)ϕ(S) + h̄2〈Sz〉(S(S + 1) + ϕ) − h̄〈(Sz)2〉(1 + 3ϕ). (4.27)

Using (4.23) to (4.27), all f spin correlations (2.16), which appear in the representation
(3.33) of the electronic self-energy, are expressed in terms ofϕ(S). Thereby we have found
a closed system of equations that can be solved self-consistently for all quantities of interest,
in particular those which inform us about the mutual influence of magnetic and electronic
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properties of the exchange-coupled system of itinerant conduction electrons and localized f
spins.

A central magnetic quantity is of course the Curie temperatureTc, which can be read
off from (4.23), because

T → T (−)
c ⇔ 〈Sz〉 → 0+. (4.28)

One finds the rather simple formula:

kBTc = 2

3
S(S + 1)

[
1

N

∑
q

(Ĵ0 − Ĵ (q))−1
Tc

]−1

. (4.29)

The ‘effective’ exchange integrals are temperature dependent. They have to be used in
(4.29) forT → Tc.

5. Discussion of the results

We have evaluated our theory for a simple cubic tight-binding Bloch density of states as
given by Jelitto [29]. Our considerations are restricted to paramagnetic and ferromagnetic
phases only, so that we can exploit the translational symmetry of the full lattice. The main
goal is to get a qualitatively correct picture of the mutual influence of localized magnetic
moments and itinerant conduction electrons. The interest is especially focused on typical
correlation effects and temperature dependencies in the energy spectra, which should be
spectroscopically observable.

5.1. The electronic quasiparticle structure

A quantity which is more or less directly related to angle- and spin-resolved (inverse)
photoemission experiments, except for as regards the dipole transition matrix element, is
the wave-vector- and spin-dependent single-electron spectral density, defined in (2.12). The
position of a prominentSkσ (E)-peak corresponds to a corresponding quasiparticle excitation.
In spite of the fact that the conduction electrons are ‘a priori’ non-magnetic, drastic magnetic
correlation effects appear as a consequence of the exchange coupling to the localized moment
system. Figure 1 shows the energy dependence of the spectral density for wave vectorsk
from the3 direction, and that for different temperatures in betweenT = 0 K andT = Tc.
The conduction band is forn = 0.2 less than half-filled. AtT = 0 K the↑ spectral density
consists of a very sharp,δ-function-like peak. The resulting quasiparticle dispersionE↑(k)

has a very simple shape, being almost identical to the ‘free’ dispersionε(k) except for a
rigid shift of about−(1/2)JS. The reason for this is that forT = 0 K a spin exchange
of the excited↑ electron with the parallel-aligned localized spin system is excluded. The
‘spin-flip’ terms in the s–f interaction (2.5) do not work; only the Ising part ofHsf accounts
for the rigid shift. The↓ electron, on the other hand, can even atT = 0 K exchange its spin
with the f system. This may happen according to two elementary processes. The first one is
a repeated emission and reabsorption of a magnon by the itinerant electron resulting in an
effective electron–magnon attraction. This gives rise to a polaron-like quasiparticle, which
we call the ‘magnetic polaron’. The electron may be considered as moving through the
lattice accompanied by a cloud of magnons. The other excitation is due to a direct magnon
emission by the conduction electron without reabsorption. In that case the original↓ particle
becomes a↑ particle. This process is of course possible only if there are↑ states within
reach. Corresponding electron states therefore must coincide with the↑ spectrum. This can
clearly be seen in figure 2 where we have plotted the quasiparticle density of states (2.13)
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Figure 1. The spectral density as a function of the energyE for wave vectors from the3
direction and for four different temperatures.Tc = 238 K is the self-consistently calculated
Curie temperature. Parameters:J = 0.2 eV, W = 1 eV, n = 0.2, S = 7/2; sc lattice.

for the same parameter set and lattice type as for figure 1 for the spectral density.ρ↓(E)

has atT = 0 K a low-energy tail in the region ofρ↑(E) 6= 0 due to the above-mentioned
magnon emission (‘scattering states’). The high-energy part ofρ↓(E) (for E-values with
ρ↑(E) = 0) consists of quasiparticle excitations which correspond to the just-explained
magnetic polaron states. In special situations [23, 25] (a single electron in an otherwise
empty band) this may even lead to a bound state, i.e. to a quasiparticle with an infinite
lifetime. The↓ spectral density near the R point (figure 1) consists atT = 0 K of a single,
rather sharp peak that represents a well-defined—say, long-living—magnetic polaron. To
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Figure 2. The spin-dependent quasiparticle density of statesρσ as a function of energy for four
different temperatures. The parameters are as in figure 1; sc lattice. Left-hand part:σ = ↑;
right-hand part:σ = ↓. The shaded region marks the occupied part of the energy band.

summarize, the QDOSρ↓(E) consists atT = 0 K (ferromagnetic saturation of the f spin
system,〈Sz〉 = S) in the upper part of polaron states, and in the lower part of scattering
states (figure 2). On the other handρ↑(E) is fully built up of undamped quasi-free-electron
states.

Magnon emission by a down-spin electron should be equivalent to magnon absorption
by an up-spin electron. At finite temperatures the f magnetization〈Sz〉 away from saturation
produces a finite magnon density. The↑ electron has then indeed the chance to absorb a
magnon, thereby reversing its own spin. One therefore recognizes atT > 0 scattering
as well as polaron states in the↑ spectrum, too. The low-energy peak of the spectral
densitySkσ (E) (figure 1) corresponds, strictly speaking, to two elementary processes. The
excitedσ -electron retains its spin and enters the local frame of the localized spin parallel
to the f spin. The other possibility is that the s electron first flips its spin via magnon
emission/absorption and then enters as a−σ -electron the local frame. At finite temperature
both theσ -electron and the−σ -electron can orientate the spin in the local frame with finite
probability parallel to the f spin. In the second process a magnon is involved, in the first
not. ForT 6= 0 the low-energy peak of the spectral density is only partly built up of pure
scattering states. The ferromagnetically saturated spin system represents a special case (a
‘magnon vacuum’) because then the low-energy part of the spectral density consists for
σ = ↓ only of scattering states, and forσ = ↑ only of states without magnon contributions.
Because of the normalization condition∫ +∞

−∞
dE Skσ (E) = 1 (5.1)

each peak in the spectral density is connected with a spectral weight which strongly changes
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Figure 3. The quasiparticle dispersion, represented as a density plot of the spectral density, for
wave vectors from the3 direction and for four different temperatures. The parameters are as in
figure 1; sc lattice. The degree of shading is a measure of the spectral weight of the quasiparticle
excitation.

with temperature and exhibits a remarkablek-dependence.
In conclusion, we observe for an s–f couplingJ/W = 0.2 strong correlation effects

in the band electron spectrum due to the exchange interaction with the localized f spin
system (figures 1, 2). Normally each(k, σ ) excitation splits into two peaks, which may be
classified as the polaron and scattering peaks. The spectral weights of these two peaks are
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Figure 4. The spin-down quasiparticle dispersion, atT = 0, represented as a density plot of
the spectral density (cf. figure 3), for various values of the s–f exchange couplingJ in the
low-density limit. Parameters:W = 1 eV, S = 7/2; sc lattice.

stronglyk- andT -dependent, where theT -dependence comes into play almost exclusively
via the magnetic state of the f spins. Since our theory models local moment ferromagnets
such as Gd, it suggests thinking about the consequences of the correlation effects in
the electronic quasiparticle spectrum for a corresponding angle- and spin-resolved direct
or inverse photoemission experiment. Such an experiment obviously requires a careful
interpretation beyond the usual one-electron picture. To clarify the situation we use in
figure 3 a density plot for the spectral density by taking the degree of shading as a measure
of the intensity, thereby mapping a ‘weighted’ quasiparticle band-structure. The↓ spectrum
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Figure 5. The spin-down spectral density atT = Tc (paramagnetic phase) as function of energy
for wave vectors from the3 direction and for various values of the exchange couplingJ . The
band occupationn = 0.2. TheTc-values change withJ .

at very low temperatures is dominated by the polaron peak being, however, accompanied
by a broad scattering spectrum for wave vectors not too far away from the0 point. With
increasing temperature the polaron peak survives but the scattering spectrum (the low-energy
part) is more and more bunched to a prominent peak. In the↑ spectrum it is the polaron
part that gains weight with increasing temperature. The photoemission will show for each
k-vector two excitations per spin with strongly wave-vector- and temperature-dependent
spectral weights.

It is interesting to compare these results with those for an only weakly coupled system.
No splitting appears, and the spectrum can be understood in a one-electron picture. The
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Figure 6. The spectral density of a band that is more than half-filled(n = 1.8) as a function
of the energyE for wave vectors from the3 direction and for four different temperatures.
Tc = 251 K is the self-consistently calculated Curie temperature for the following parameters:
J = 0.25 eV,W = 1 eV, S = 7/2; sc lattice.

electronic self-energy (3.33) is well approximated by the linear term−(1/2)J zσ 〈Sz〉, which
is responsible for a ‘Stoner-like’ temperature shift of the dispersions. The quasiparticle
density of states shows only slight deviations from the ‘free’ Bloch density of states. On
a plausible level the strikingly different results for intermediate and for weak exchange
couplingsJ/W can easily be interpreted. For weak couplings the conduction electron
possesses a relatively high mobility. Therefore, it ‘sees’ the total magnetization of the f
spin system, which builds up something like an internal magnetic field causing the ‘Stoner-
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Figure 7. The quasiparticle dispersion, represented as density plot of the spectral density, for
wave vectors from the3 direction and for four different temperatures. Parameters:J = 0.15 eV,
W = 1 eV, n = 0.1, S = 7/2; sc lattice. The degree of shading is a measure of the spectral
weight of the quasiparticle excitation.

like’ shift proportional to 〈Sz〉. For stronger exchange couplingsJ/W the local frame
becomes decisive. The conduction electron spin can fix its position parallel or antiparallel
to the local f spin. The two arrangements require two different energies which do not change
very much with temperature; only the probabilities that the electron enters the local frame
as an↑ or a↓ electron become distinctlyT -dependent. This leads to temperature-dependent
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Figure 8. The effective exchange integral̂Jij as a function of the distanceRij in the (100)
direction of the sc lattice for non-interacting band electrons (RKKY). Parameters:J = 0.2 eV,
W = 1 eV. Solid line: J = 0.1 eV, n = 0.05; dotted line:J = 0.1 eV, n = 0.1; broken line:
J = 0.15 eV,n = 0.1.

spectral weights of the quasiparticle peaks, the positions of which, however, remain more
or less unaffected (figure 1).

The correlation-caused splitting of the single-electron spectral density sets in when the
s–f coupling strengthJ/W exceeds a critical value of about 0.1. Figure 4 demonstrates the
J -dependence of the down-spin quasiparticle dispersion for a ferromagnetically saturated
f system and for a very small band occupationn. The non-trivial, rigorously solvable
limiting case of a single electron in an otherwise empty conduction band [23–25, 31] is
exactly reproduced by our theory. Therefore, the results forT = 0 andn = 0.01 in figure
4 should be highly reliable, proving that the splitting of the down-spin spectral density into
a polaronic and a scattering portion is not at all an artefact of unavoidable approximations
used in the calculations. It is a fundamental feature of the underlying physical system.
The polaronic part is always a sharp structure, representing thereby a quasiparticle with
a sufficiently long lifetime. The scattering region is rather broad with a remarkablek-
dependence. Near the0 point the scattering states have especially high spectral weights at
the cost of the magnetic polaron. For strongly coupled systems,J/W > 0.2, the polaron
and scattering parts are split, i.e. the decay of the polaron via magnon emission becomes
impossible. For weaker coupling the polaron peak dips for certain wave vectors into the
scattering region, gaining thereby the possibility of flipping the electron spin by emitting
a magnon. It is interesting to recognise that at the Curie pointTc (figures 1, 5) the two
structures in the paramagnetic single-electron spectral density both appear as prominent
quasiparticle peaks. The splitting sets in forJ/W > 0.1. The relative shift of the two
peaks increases withJ , approximately according to(1/2)J (2S + 1). In the zero-bandwidth
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Figure 9. The effective exchange integralĴij as a function of the distance in the (100) direction
calculated with the full theory (4.16). Solid line:J = 0.1 eV,n = 0.05; dotted line:J = 0.1 eV,
n = 0.1; broken line:J = 0.15 eV,n = 0.1. The temperature is chosen so that the magnetization
amounts to〈Sz〉 = 3.0. Parameters:W = 1 eV, S = 7/2; sc lattice.

limit W → 0, this is an exact result [28]. TheTc-values, used in figure 5, are self-
consistently calculated (see the next subsection) and of course strongly change with the
coupling strengthJ . The correlation effects for more-than-half-filled bands(n > 1) are
compatible with those that we just discussed for less-than-half-filled bands(n < 1). We
have only to apply the particle(σ )–hole (−σ) symmetry. An example is given in figure
6. At T = 0 the down-spin spectrum is now simple while the up-spin spectrum consists
of a low-energy polaron peak and high-energy scattering states. The critical value of the
exchange couplingJ/W , for which the gap between the polaron and scattering parts of
the spectrum opens, turns out to be temperature dependent. Figure 7 shows an example
for a moderate couplingJ/W = 0.15 and a less-than-half-filled energy band. For low
temperatures the two quasiparticle subbands are overlapping, while a gap appears when the
temperature approaches the Curie point. This is accompanied by a substantial quasiparticle
band narrowing.

5.2. Magnetic properties

The spin polarization of the conduction electrons induced by the exchange coupling with
the local f-moment system leads to an indirect coupling between the localized spins (4.14).
This type of exchange coupling is referred to in the literature as RKKY interaction [16–18].
The original derivation is performed within perturbation theory of second order leading
for the free-electron gas to the well-known oscillatory behaviour of the effective exchange
integral (figure 8). The band occupationn (0 6 n 6 2) determines the Fermi edge and
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Figure 10. The Curie temperature as a function of the band occupationn (0 6 n 6 2) for
various values of the s–f exchange couplingJ . Other parameters:W = 1 eV, S = 7/2;
sc lattice.

thereby the wavelength of the oscillation (4.18). The perturbation theory does not lead to
any temperature dependence of the indirect exchange coupling. That becomes different in
our extended theory. The effective exchange integrals (4.15) are decisively influenced by
the conduction electron self-energy. That implies in particular a remarkable temperature
dependence. The example plotted in figure 9 demonstrates that the oscillations of the
exchange integral are far less regular and are substantially damped compared to those of
the ‘conventional’ RKKY theory for the free electron. The shape of the distance-dependent
couplingĴij differs strongly for different symmetry directions. The influence of temperature
on the electronic self-energy is mainly due to the magnetization〈Sz〉 of the f system and that
feeds back to the indirect f–f interaction and the effective magnon energiesE(q) of (4.21).

One of the key quantities of a ferromagnetic material is the Curie temperature of (4.29).
We stress once more that we did not consider a direct exchange between the localized
spins, so a ferromagnetic order must come out self-consistently as a consequence of the
mutual influence of the conduction electrons and the localized spins. The various results
are gathered together in figure 10. No ferromagnetism is possible around the half-filled band
(n = 1). The Curie temperature has a maximum for the quarter-filled (three-quarter-filled)
band(n = 0.5 and 1.5) and increases with the s–f couplingJ . The RPA treatment of the
effective spin Hamiltonian in section 4 certainly overestimates the magnetism somewhat,
but, nevertheless, realistic values of the transition temperatures are found.

The finiteness of the Curie temperature is exclusively due to the s–f exchangeJ between
the local moment system and the conduction electrons. For smallJ the conventional RKKY
behaviour (4.18) is valid. From perturbation theory of second order, it leads to aJ 2-
dependence of the transition temperature. This behaviour is correctly reproduced by our
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Figure 11. The Curie temperature as a function of the s–f exchange couplingJ for various
values of the band occupationn. Other parameters:W = 1 eV, S = 7/2; sc lattice.

theory as can be seen in figure 11. For higher band occupations(n > 0.2), however,J
must exceed a critical value to allow ferromagnetism (figure 10). With increasing exchange
coupling the Curie temperature deviates more and more from the RKKY prediction, which
finally leads to saturation. This saturation is reached for smallerJ -values for lower band
occupationsn. This feature is certainly a physically reasonable result. As soon as the
splitting of the energy band into the two quasiparticle subbands occurs (figure 2) a further
increasing exchange interactionJ will no longer change the magnetic behaviour of the local
moment system very much. A perturbational treatment of the problem is restricted to rather
weakly coupled systems.

The f spin correlation functions (figure 12) exhibit the temperature behaviour typical
of Heisenberg ferromagnets. The magnetization curve deviates to a certain degree from
the S = 7/2 Brillouin function. All of the spin correlations enter the electronic self-
energy, being therefore responsible for the temperature dependence. According to the
results (4.23) to (4.27) the correlation functions are fully determined by the quantityϕ(S)

that can be interpreted as an average magnon number. Consequently it disappears for
T = 0 (the ‘magnon vacuum’) and increases rapidly with increasing temperature. Our
theory correctly reproduces the exact limiting value of(1/3)S(S + 1)for 〈(Sz)2〉 in the
paramagnetic regionT > Tc. The temperature dependence of the induced conduction band
polarizationm = 〈n↑〉 − 〈n↓〉 is very similar to that of the f magnetization (figure 12).
The correlation functionsγ↑ andγ↓ may be considered as rates of spin fluctuation between
itinerant and localized spin systems. Assuming that they are real quantities, they must
be identical. The small deviations to be seen in figure 13 are due to our approximate
procedure. The mixed spin correlation〈S · σ〉 = (1/2)(1↑ − 1↓ + γ↑ + γ↓) is always
positive, indicating a parallel alignment of the f spin and conduction electron spin.
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Figure 12. Correlation functions of the localized f spin system as functions of the temperature.
Parameters:J = 0.2 eV, W = 1 eV, n = 0.2, S = 7/2; sc lattice.

6. Conclusions

We have presented an approximate but self-consistent theory for a metallic local moment
ferromagnet described within the framework of the s–f model. The physical properties
are determined by an exchange interaction between itinerant conduction electrons and
localized f electrons which build up Hund’s-rule-coupled localized spins(S = 7/2). The
decisive model parameters and features are the coupling strengthJ , the lattice structure,
the band occupationn (0 6 n 6 2) and the temperatureT . The model simulates metallic
ferromagnets such as the rare earth gadolinium, and will be applied in a forthcoming paper to
such real substances. The exchange interaction induces characteristic quasiparticle effects
on the conduction band which manifest themselves in the form of striking temperature
dependencies, band deformations and splittings. The observed features can be understood
as consequences of three basic elementary processes. The excited electron may hop over
lattice sites where it orientates its spin parallel to the local f spin, or it may first emit or
absorb a magnon thereby flipping its own spin and then hopping with parallel spin orientation
over respective lattice sites. The third process can be interpreted as a repeated emission and
reabsorption of a magnon by the electron which gives rise to a polaronic quasiparticle (a
‘magnetic polaron’). In a certain sense the electron moves through the lattice accompanied
by a cloud of virtual magnons.

The f spins polarize the conduction electrons and that feeds back as an indirect coupling
between the f spins. In second-order perturbation theory one gets the well-known RKKY
mechanism with oscillating sign of the effective exchange integral. The RKKY mechanism
is valid of course only for small s–f couplingJ , giving rise then to aJ 2-dependence of the
resulting Curie temperature. For stronger coupling the effective exchange integrals become
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Figure 13. The magnetization-normalized electron spin polarizationm/n, the ‘Ising correlation’
1s , and the spin exchange rateγs as functions of the temperature. Parameters:J = 0.2 eV,
W = 1 eV, n = 0.2, S = 7/2; sc lattice.

complicated functionals of the electronic self-energy, deviating substantially then from the
RKKY picture. The oscillations are no longer so regular as in the perturbational treatment,
but still take care of the fact that ferromagnetism is possible only in restricted regions of
the band occupation. Furthermore one finds thatTc saturates with increasingJ , where the
saturation value is strongly dependent on the band occupationn.

It is intended to apply the above-presented theory to real substances such as Gd, Dy, and
Tb. For this purpose we have to combine our many-body model calculation presented in
this paper with a one-electron band-structure calculation based on density functional theory.
This procedure has previously been performed for the ferromagnetic Heisenberg insulators
EuO and EuS [3–5].
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Appendix A

A straightforward evaluation yields the following expressions:

〈〈Sz
i [ciσ , Hsf ]−; c+

jσ 〉〉E + zσ 〈〈S−σ
i [ci−σ , Hsf ]−; c+

jσ 〉〉

= − 1

2
Jzσ (S(S + 1)Gijσ (E) − zσ0ii,jσ (E) − Fii,jσ (E)) (A.1)
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〈〈[Sz
i , Hsf ]ciσ ; c+

jσ 〉〉 = −1

2
JzσF

(3)
ii,jσ (E) (A.2)

which prove that the ‘higher Ising functions’ on the right-hand side of (3.5) do not require
the introduction of further Green functions. The ‘Ising functions’ can all be expressed using
terms already introduced.

Appendix B

For fixing the coefficientsαiσ , βiσ (i = 1, . . . , 4) in theansätze(3.24) to (3.27) we need the
first two spectral moments (3.30) for the Green functionsGijσ (E) (equation (2.7)),Fii,jσ (E)

(equation (3.2)),0ii,jσ (E) (equation (3.3)), andF (n)
ii,jσ (E) for n = 1, . . . , 4 (equations (3.16)

to (3.19)). Straightforward but somewhat tedious evaluations according to (3.28) yield

M
(0)
ijσ (G) = δij (B.1)

M
(1)
ijσ (G) = Tij − δij

1

2
Jzσ 〈Sz〉 (B.2)

M
(0)
ijσ (F ) = 0 (B.3)

M
(1)
ijσ (F ) = −1

2
Jδij (〈S−σ

i Sσ
i 〉 − γσ + 2zσ1−σ) (B.4)

(whereγσ and1σ are defined in (2.17)),

M
(0)
ijσ (0) = δij 〈Sz〉 (B.5)

M
(1)
ijσ (0) = Tij 〈Sz〉 + δij

1

2
Jzσ (γσ − 〈(Sz)2〉) (B.6)

M
(0)
ijσ (F (1)) = 0 (B.7)

M
(1)
ijσ (F (1)) = −δij

1

2
J {3zσ 〈Sσ

i S−σ
i 〉 − 4〈Sz〉 + 〈Sσ

i S−σ
i Sz

i 〉
− 2zσS(S + 1)(1 − 〈n−σ 〉) + 41−σ − 3zσµ−σ − ησ } (B.8)

(where the ‘higher’ correlation functionsµσ , ησ are given in (2.18)),

M
(0)
ijσ (F (2)) = δij 〈S−σ

i Sσ
i 〉 (B.9)

M
(1)
ijσ (F (2)) = Tij 〈S−σ

i Sσ
i 〉 − δij

1

2
Jzσ (〈S−σ

i Sσ
i Sz

i 〉 + 2ησ ) (B.10)

M
(0)
ijσ (F (3)) = −δij γσ (B.11)

M
(1)
ijσ (F (3)) = −Tij γσ + δij

1

2
J (zσ ησ − µσ − 2zσϑ) (B.12)

(where the spin-independent expectation valueϑ is defined in (2.18)), and

M
(0)
ijσ (F (4)) = −δij1−σ (B.13)

M
(1)
ijσ (F (4)) = −Tij1−σ + δij

1

2
J (zσS(S + 1)〈n−σ 〉 − zσµ−σ + 1−σ − ησ). (B.14)

These moments are used to fix, by the use of (3.29), the unknown coefficientsαiσ , βiσ :

α1σ = 0 (B.15)

β1σ = M
(1)
ijσ (F (1))

M
(1)
ijσ (F )

(B.16)

α2σ = 〈S−σ
i Sσ

i 〉 − β2σ 〈Sz〉 (B.17)
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β2σ = 〈(Sz)3〉 + 〈(Sz)2〉(zσ − zσ 〈Sz〉) − 〈Sz〉2 − 2γσβ1σ

γσ − 〈(Sz)2〉 + 〈Sz〉2
(B.18)

α3σ = −γσ (B.19)

β3σ = 〈nσ 〉 (B.20)

α4σ = −1−σ − β4σ 〈Sz〉 (B.21)

β4σ = S(S + 1)〈n−σ 〉 − µ−σ + 1−σ (zσ − 〈Sz〉) − zσ ησ

γσ − 〈(Sz)2〉 + 〈Sz〉2
. (B.22)

Appendix C

We present an explicit solution for the hierarchy of Green functions introduced in the main
text. If we agree upon the following abbreviations:

aσ = −α1σ + zσα2σ − zσα3σ − zσS(S + 1) (C.1)

bσ = 1 + zσβ2σ (C.2)

cσ = zσ − β1σ − zσβ3σ (C.3)

then we are left with the following approximate equation of motion of the ‘Ising’ function
(3.3):∑

r

{Eδpr − Tpr − Mprσ (E)}0ir,jσ (E) = h̄〈Sz〉δpj + δip

{
1

2
J (aσGijσ (E) + bσ0ii,jσ (E)

+ cσFii,jσ (E)) −
∑

r

Mirσ (E)0ir,jσ (E)

}
. (C.4)

Similarily we use the abbreviations

Aσ = zσα1σ − α2σ − α3σ + 2zσα4σ (C.5)

Bσ = −β2σ + 2zσβ4σ (C.6)

Cσ = zσβ1σ − β3σ (C.7)

for the equation of motion of the ‘spin-flip’ function (3.2):∑
r

{Eδpr − Tpr − Mpr−σ (E)}Fir,jσ (E) +
∑
m

zσ ÊimFmp,jσ (E)

= δip

{
1

2
J (AσGijσ (E) + Bσ0ii,jσ (E) + CσFii,jσ (E))

+
∑
m

zσ ÊimFmi,jσ (E) −
∑

r

Mir−σ (E)Fir,jσ (E)

}
. (C.8)

The Êim are the site-dependent Fourier transforms of the ‘dressed’ magnon energiesÊ(q),
to be derived in equation (4.21):

Êim = 2〈Sz〉(Ĵ0δim − Ĵim). (C.9)

The coupled system (3.1), (C.4), and (C.8) is solved in the wave-vector representation,
for the single-electron Green function already explained by equation (2.9) and analogously
defined for the ‘higher’ functions:

Akp,qσ (E) = 1

N2

∑
ipj

Aip,jσ (E)e−i(k·Ri+p·Rp−q·Rj ) (A = F, 0). (C.10)
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In addition we can exploit translational symmetry:

Akp,qσ (E) = δk+p,qAq−pp,qσ (E).

With the shorthand notation

Âqσ (E) = 1

N

∑
p

Aq−pp,qσ (E) (A = F, 0) (C.11)

we first transform the ‘basic’ equation of motion (3.1):

(E − ε(q))Gqσ (E) = h̄ − 1

2
J (zσ 0̂qσ (E) + F̂qσ (E))

!= h̄ + Mqσ (E)Gqσ (E). (C.12)

This means that for the self-energy

Mqσ (E) = −1

2
J (zσ 0̂qσ (E) + F̂qσ (E))G−1

qσ (E). (C.13)

For the ‘higher’ functions on the right-hand side we use the equations of motion (C.4) and
(C.8) of, respectively, the Ising and the spin-flip function which, after Fourier transformation,
build together with (C.12) a closed system of equations.

Appendix D

We derive the needed correlation functions of the localized spin system. The starting point
is the correlation function

fq(a) = 1

N

∑
i,j

eiq·(Ri−Rj )〈eaSz
j S−

j S+
i 〉 (D.1)

that can be expressed in terms ofP (a)
q (E) according to the spectral theorem

fq(a) = 〈A(a)〉[exp(βE(q)) − 1]−1. (D.2)

A wave-vector summation yields

f̂ (a) = 1

N

∑
q

fq(a) = 〈eaSz

S−S+〉 = 〈A(a)〉ϕ(S). (D.3)

Here we have introducedϕ(S) from (4.24). Trying to find a determining equation for〈Sz〉
we first derive a differential equation for

�(a) = 〈eaSz〉 (D.4)

whose solution allows us to fix〈Sz〉:
〈Sz〉 = d

da
�(a)|a=0. (D.5)

Evaluating the commutator in (4.20) and exploiting the identity

S+
i S−

i = h̄2S(S + 1) + h̄Sz
i − (Sz

i )
2 (D.6)

one finds

〈A(a)〉 = h̄2S(S + 1)(e−h̄a − 1)�(a) + h̄(e−h̄a + 1)
d

da
�(a) − (e−h̄a − 1)

d2

da2
�(a).

(D.7)

Furthermore, the following obviously holds because of (5.9) and (5.11):

f̂ (a) = h̄2S(S + 1)�(a) − h̄
d

da
�(a) − d2

da2
�(a). (D.8)
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Inserting (D.7) and (D.8) into (D.3) leads to a differential equation of second order for
�(a):

d2

da2
�(a) + h̄

1 + ϕ(S)(e−h̄a + 1)

1 − ϕ(S)(e−h̄a − 1)

d

da
�(a) − h̄2S(S + 1)�(a) = 0. (D.9)

A first boundary condition is

�(0) = 1. (D.10)

As the second condition we use

0 =
〈 +S∏

ms=−S

(Sz − h̄ms)

〉
=

[ +S∏
ms=−S

(
d

da
− h̄ms

)]
�(a)|a=0 = 0. (D.11)

After some tedious manipulations we get as the solution of (D.9) [26]

�(a) = e−h̄aSϕ2S+1 − ēha(S+1)(1 + ϕ)2S+1

((1 + ϕ)ēha − ϕ)(ϕ2S+1 − (1 + ϕ)2S+1)
. (D.12)

From this equation we can derive all of the f spin correlation functions in equation (2.16)
which enter the expression (3.33) for the electronic self-energy. The terms which are
important for our theory are listed as equations (4.23) to (4.27).
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